Extensions 1→N→G→Q→1 with N=C14 and Q=C25

Direct product G=N×Q with N=C14 and Q=C25
dρLabelID
C25×C14448C2^5xC14448,1396

Semidirect products G=N:Q with N=C14 and Q=C25
extensionφ:Q→Aut NdρLabelID
C14⋊C25 = D7×C25φ: C25/C24C2 ⊆ Aut C14224C14:C2^5448,1395

Non-split extensions G=N.Q with N=C14 and Q=C25
extensionφ:Q→Aut NdρLabelID
C14.1C25 = C23×Dic14φ: C25/C24C2 ⊆ Aut C14448C14.1C2^5448,1365
C14.2C25 = D7×C23×C4φ: C25/C24C2 ⊆ Aut C14224C14.2C2^5448,1366
C14.3C25 = C23×D28φ: C25/C24C2 ⊆ Aut C14224C14.3C2^5448,1367
C14.4C25 = C22×C4○D28φ: C25/C24C2 ⊆ Aut C14224C14.4C2^5448,1368
C14.5C25 = C22×D4×D7φ: C25/C24C2 ⊆ Aut C14112C14.5C2^5448,1369
C14.6C25 = C22×D42D7φ: C25/C24C2 ⊆ Aut C14224C14.6C2^5448,1370
C14.7C25 = C2×D46D14φ: C25/C24C2 ⊆ Aut C14112C14.7C2^5448,1371
C14.8C25 = C22×Q8×D7φ: C25/C24C2 ⊆ Aut C14224C14.8C2^5448,1372
C14.9C25 = C22×Q82D7φ: C25/C24C2 ⊆ Aut C14224C14.9C2^5448,1373
C14.10C25 = C2×Q8.10D14φ: C25/C24C2 ⊆ Aut C14224C14.10C2^5448,1374
C14.11C25 = C2×D7×C4○D4φ: C25/C24C2 ⊆ Aut C14112C14.11C2^5448,1375
C14.12C25 = C2×D48D14φ: C25/C24C2 ⊆ Aut C14112C14.12C2^5448,1376
C14.13C25 = C2×D4.10D14φ: C25/C24C2 ⊆ Aut C14224C14.13C2^5448,1377
C14.14C25 = C14.C25φ: C25/C24C2 ⊆ Aut C141124C14.14C2^5448,1378
C14.15C25 = D7×2+ 1+4φ: C25/C24C2 ⊆ Aut C14568+C14.15C2^5448,1379
C14.16C25 = D14.C24φ: C25/C24C2 ⊆ Aut C141128-C14.16C2^5448,1380
C14.17C25 = D7×2- 1+4φ: C25/C24C2 ⊆ Aut C141128-C14.17C2^5448,1381
C14.18C25 = D28.39C23φ: C25/C24C2 ⊆ Aut C141128+C14.18C2^5448,1382
C14.19C25 = C24×Dic7φ: C25/C24C2 ⊆ Aut C14448C14.19C2^5448,1383
C14.20C25 = C23×C7⋊D4φ: C25/C24C2 ⊆ Aut C14224C14.20C2^5448,1384
C14.21C25 = D4×C22×C14central extension (φ=1)224C14.21C2^5448,1386
C14.22C25 = Q8×C22×C14central extension (φ=1)448C14.22C2^5448,1387
C14.23C25 = C4○D4×C2×C14central extension (φ=1)224C14.23C2^5448,1388
C14.24C25 = C14×2+ 1+4central extension (φ=1)112C14.24C2^5448,1389
C14.25C25 = C14×2- 1+4central extension (φ=1)224C14.25C2^5448,1390
C14.26C25 = C7×C2.C25central extension (φ=1)1124C14.26C2^5448,1391

׿
×
𝔽